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ABSTRACT
A new method for the estimation of migration rates and effective population sizes is described. It

uses a maximum-likelihood framework based on coalescence theory. The parameters are estimated by
Metropolis-Hastings importance sampling. In a two-population model this method estimates four parame-
ters: the effective population size and the immigration rate for each population relative to the mutation
rate. Summarizing over loci can be done by assuming either that the mutation rate is the same for all
loci or that the mutation rates are gamma distributed among loci but the same for all sites of a locus.
The estimates are as good as or better than those from an optimized FST -based measure. The program is
available on the World Wide Web at http://evolution.genetics.washington.edu/lamarc.html/.

SEVERAL methods for the estimation of migration and migration events. This should be superior to pair-
wise estimators such as those using FST or related statisticsrates between subpopulations have been proposed.

We can subdivide them into two very different ap- (cf. Felsenstein 1992b) and also more powerful than
the cladistic approach of Slatkin and Maddisonproaches: (1) marking individuals and tracking their

individual movements and then extrapolating these in- (1989), which needs to know the true genealogy. Our
approach estimates similar parameters as the programdividual movements to migration rates; or (2) surveying

genetic markers in the populations of interest and calcu- of Bahlo and Griffiths (http://www.maths.monash.edu.
au/zmbahlo/mpg/gtree.html/), which is based on thelating a migration rate from allele frequencies or se-

quence differences. Of course, one should be aware work of Griffiths and Tavaré (1994) and Nath and
Griffiths (1996). It differs in the way we search thethat these two approaches do not estimate the same

quantity: approach 1 estimates the actual “instantane- genealogy space, and our methods support mutation
models for different types of data: the infinite alleleous” migration rate of individuals, whereas approach 2

reflects an average over a time period whose length is model for electrophoretic markers, a one-step model for
microsatellites, and a finite-sites model for nucleotidedetermined by the rate of mutation per generation of

the locus under study or by the time scale of genetic sequences. The sequence model is more useful than
the infinite sites model, which forces the researcher todrift. The genetic approach tends to gives a lower esti-

mate than the individual migration rates approach be- discard data when there are multiple mutations at the
same sites.cause the method is looking at changes that become

established in the subpopulation gene pool.
Current estimation methods for genetic data are

MODELmethods such as those related to FST (e.g., Slatkin 1991;
Slatkin and Hudson 1991), the rare allele approach of We propose a method to make a maximum-likelihood
Slatkin (1985), a maximum-likelihood method using estimate of population parameters for geographically
gene frequency distributions (Rannala and Hartigan subdivided populations. The general outline of such
1996; Tufto et al. 1996), and approaches based on coa- estimates involves extending coalescence theory (King-
lescent theory (Kingman 1982a,b), such as the cladis- man 1982a,b) to include migration events. Migration
tic approach of Slatkin and Maddison (1989), the models with coalescents were first developed by Taka-
method outlined in Wakeley (1998), and maximum hata (1988) and Takahata and Slatkin (1990) for
likelihood using coalescent theory (Nath and Grif- two gene copies and discussed more generally for n
fiths 1993, 1996). We describe here a new method us- gene copies in two populations by Hudson (1990), with
ing a maximum-likelihood- and coalescent theory-based generalization to multiple populations and different
approach. models of migration by Notohara (1990). Nath and

Our method integrates over all possible genealogies Griffiths (1993, 1996) used this migration-coalescent
process for maximum-likelihood estimation of one pa-
rameter, the effective number of migrants g 5 4Nem,
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results could not be extended to cases with geographical
structure. They were unable to obtain the distribution
of times to coalescence in the presence of migration.
We have avoided this difficulty by having the genealogy
G specify not only the coalescences but also the times

Figure 1.—Two-population model with four parameters:
and places of migration events. With this informationm1 is the migration rate per generation from population 2 to
in G, its probability density becomes for two populations1, m2 from population 1 to 2, and N(i)

e is the effective population
size. a product of terms for the intervals between events in

the genealogy

Our migration model consists of two populations. Prob(G|P) 5 p
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These have effective population sizes N (1)

e and N (2)
e , which

need not be equal. The populations exchange migrants where
at rates m1 and m2 per generation (Figure 1).

Because we observe only genetic differences and do
pj 5 exp12ujo

2

i51
1kjiMi 1

kji(kji 2 1)
Qi

22 . (3)not know the mutation rate m, we must absorb m into
the parameters so that we use as our parameters

Prob(G|P) is obtained by computing for each interval
Qi 5 4N (i)

e m, the probability that nothing happens during the interval
times the probability of the particular event at the bot-and
tom (beginning) of the interval. The variable vi is the
total number of coalescences in subpopulation i andMi 5

mi

m
,

w.i is the sum of the numbers of migration events to
subpopulation i over all time intervals T. Furthermore,

and occasionally write pj is the probability that no event occurs during time
interval j, uj is the length of time interval j, and kji isgi 5 QiMi 5 4N (i)

e mi .
the number of lineages in subpopulation i during time

We make the following assumptions: that diploid in- interval j.
dividuals in each population reproduce according to If we extend the parameter estimation from a single
any standard population genetic model that converges locus to many unlinked loci, we face the additional
to the same diffusion equation as a Wright-Fisher problem that, although m may be constant per locus, it
model, that populations have a constant population size can vary between loci. Neglecting variation of m, combin-
through time so that they do not grow or shrink, and ing L loci using the likelihood framework is simple:
that the mutation rate m is constant. These are also the
assumptions used by Kingman (1982a) for coalescence L(P) 5 p

L

l51

Ll(P). (4)
theory. We use the convention with sequence data that
m is the rate of mutation per generation per site, whereas On the other hand, if we assume that m follows a gamma
with microsatellite or enzyme electrophoretic data we distribution and therefore can vary between loci, we
take m to be the rate of mutation per generation per need to include an additional parameter, the shape
locus. To emphasize this distinction between sites and parameter a of this distribution. The other parameter
loci, we use a capital Q in the first case and a small u of this gamma distribution is a scale parameter that can
for the latter ones. The mutation rate m can vary among be conveniently chosen to be m/a. By parameterizing
loci according to a gamma distribution. In addition we in this way, 1/a is the squared coefficient of variation
also need to assume that the two populations exchange of m. We cannot estimate the mean mutation rate m of
migrants with constant rates per generation. this gamma distribution directly. As Ne is the same for

The likelihood formula for this family of methods all loci, we can use an arbitrary Q (we have chosen the
(Felsenstein 1988, 1992a; Kuhner et al. 1995, 1998) is effective population size of the first population) and
based on the product between the genealogy likelihood scale the other parameters relative to it. We replace m
Prob(D|G) (e.g., Felsenstein 1973; Swofford et al. in the parameters Qi and Mi with a new variable, the
1996) and the prior probability of the coalescent geneal- mutation rate x. Qj is the mutation rate x scaled by
ogy Prob(G|P) (Kingman 1982a,b) 4N (1)

e . We integrate over all possible values of Qj instead
of x. This does not change the shape of our likelihoodL(P) 5 o

G
Prob(D|G) Prob(G|P), (1)

surface, because N (1)
e in Qj is constant, so that we have

where the parameters P are
L(P,a) 5 p

L

l
1 1
G(a)ba#

∞

0

e2Qj/bQa21
j Ll(P9)dQj2, (5)P 5 [Q1, Q2, M1, M2] .

Takahata and Slatkin (1990) found that Kingman’s where
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In the program Coalesce (Kuhner et al. 1995) a re-
b 5

Q1

a
, gion of internal nodes in the genealogy is erased and

rebuilt according to the coalescent model. This schemeP9 5 3Qj, Q2
Qj

Q1

, M(j)
1 , M(j)

2 4, is not applicable to migration models. We adopt a new
scheme that is much more general and that can beQj 5 4N(1)

e x,
used in any extension to the coalescent model. The first

and genealogy for each locus is constructed with a UPGMA
method (as implemented by M. K. Kuhner and J. Yamato
in Felsenstein 1993), and the minimal necessary migra-M(j)

i 5
gi

Qi

Q1

Qj

.
tion events are inserted using a Fitch parsimony algo-
rithm (Fitch 1971). The times for coalescent events orThis integral over all mutation rate values is imple-
migration events on this first genealogy are calculatedmented using a discrete gamma approximation with
with (3) using a uniform random number for pj and100 intervals (cf. Yang 1994).
solving for uj, and parameter values, which are eitherNote that the gamma distribution described here is
guessed by the researcher or calculated using an FST -the distribution of m across loci, not the more commonly
based method (see appendix).used gamma distribution of rates across sites within a

The genealogies are sampled as follows (cf. Figure 2):locus. If needed the latter can be approximated by
A coalescent node or tip z on this genealogy is chosenHidden Markov model methods in the case of DNA
at random, the lineage below it is dissolved, and thesequences.
node is used as the starting point to simulate the ancestry
using a migration-coalescent process through a series
of time intervals (Figure 2). The other lineages do notIMPLEMENTATION
change and are taken as given and form the partial

To calculate the likelihood L(P) for the parameters P genealogy Gp. For the further description of the re-
using (1) we ought to sum over all possible genealogies, arrangement process we use “up” and “top” for being
including all topologies with all possible branch lengths or moving closer to the tips of the genealogy and “down”
and with all possible migration scenarios. This is not and “bottom” for being or moving toward the root of
possible, as even with two tips there are an infinite the genealogy. Starting at the chosen node z (see Figure
number of possible sequences of migration events with 2), we draw a new time interval by solving for uj in
different branch length. We have to resort to an approxi-
mation of the likelihood function using a Metropolis- p9j 5 exp12uj 3Mi 1

2k9
ji

Qi
42 (7)

Hastings Markov chain Monte Carlo approach (Metrop-
olis et al. 1953; Hammersley and Handscomb 1964;

after substituting a uniform deviate for p9j , where k9ji isHastings 1970; Kuhner et al. 1995). The derivation
the number of lineages of population i in the partialof the importance sampling function is shown in the
genealogy Gp during the time interval j. If this new timeappendix.
is further back in time than the bottom of the timeThe parameter estimation is simple in principle: we
interval j on the partial genealogy Gp, the active lineagehave to find the maximum of the likelihood function,
advances down to that time and the simulation processwhich has five or six dimensions, depending on whether
starts again. When the newly drawn time is in the active

m is allowed to vary between loci. This is done by a
time interval, an event, either a migration or coales-modified damped Newton-Raphson method (Dahl-
cence, is drawn according to their relative probabilitiesquist and Björk 1974) using explicit equations for the
of occurrence, e.g.,first and second derivatives.

The genealogy sampler is of more interest. A large Prob(Migration event in population i) 5
Mi

Mi 1 2k9
ji/Qi

. (8)
sample of genealogies G 1, G 2, . . . ,Gm is drawn from a
distribution whose density is proportional to Prob(D|G) If a migration event occurs the process moves down to
Prob(G|P0). This sampling scheme is biased toward ge- the time when the migration event happened. Below a
nealogies that contribute more to the likelihood with a migration event the active lineage is in the other popu-
given parameter set P0. We find the relative likelihood lation and the migration-coalescent process continues
at other P values by dividing by the density from which (see also Figure 2C). After a coalescent event occurs
we sampled the genealogies (see also appendix). If m the process stops. The transformation from one geneal-
is the number of sampled genealogies, we get ogy into another allows change from any genealogy over

several steps into any other and therefore allows theL(P)
L(P0)

> 1
m o

m

i

Prob(D|Gi) Prob(Gi|P )
Prob(D|Gi) Prob(Gi|P0) process to search the whole genealogy space. On the

other hand, the resimulation of a single line guarantees
that newly found genealogy is similar to the old gene-> 1

m o
m

i

Prob(Gi|P)
Prob(Gi|P0)

. (6)
alogy.
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Figure 2.—Transition
from an old genealogy Go to
a new genealogy Gn. Dotted
lines are the times of coales-
cences or migrations. (A)
Genealogy Go with migra-
tion. The black bar marks
a migration from the white
population to the black or
vice versa; z is the node to
be picked. (B) Partial gene-
alogy Gp after drawing the
coalescent node z at ran-
dom and dissolving the
branch to the next coales-
cent below. (C) Simulation
of the coalescent with mi-
gration. One possible out-
come with three consecu-
tive steps is shown: (1) using
Equation 7 a new time inter-
val is drawn and a migration
event from white to black is
also drawn (Equation 8)
and the lineage is extended
down to that event; (2) a
new time interval is drawn:
it extends too far back, so
the lineage advances down
to the time j; (3) a new time
interval is drawn with a coa-
lescent event at its bottom
end. The process stops at
time k. (D) the final con-
figuration Gn.

In cases where all the lineages have not coalesced by of Gp and the old root on Go on the partial genealogy
has a known history, so there is no need to simulatethe time of the root of the partial genealogy, simulation

on the active lineage and the bottom lineage of Gp this history again.
A change to the newly found genealogy Gn is acceptedcontinues until the lineages coalesce (Figure 3). When

simulating on two lineages we draw new time intervals with probability
r 5 min(1, rMrH), (9)using (3) instead of (7). There is one exception to this

rule at the bottom of the genealogy: if by chance the
where rM is the Metropolis termdissolved lineage is the bottommost lineage of one of

the populations on Go, we keep simulating with a single
rM 5

Prob(D|Gn) Prob(Gn|P)
Prob(D|Go) Prob(Go|P)

(10)active lineage below the root of Gp until the former root
of Go is reached and then start to simulate on both of
the two remaining lines. The lineage between the root and rH is the Hastings term

Figure 3.—Simulation
on one or two lineages at
the bottom of a genealogy.
Striped lineages are active.
On these lineages the mi-
gration-coalescent process
is used to find new time in-
tervals and events. (A) old
genealogy Go, with 1 indicat-
ing the branch to be cut to
get genealogy B, and 2 indi-
cating the branch to be cut

to get C. (B) The root R is below the cut-point D, and so below the root we need to calculate the migrations and coalescences
for two lineages, because there is no previous information present. (C) In this genealogy a single lineage simulation is needed,
using the information present between R and D. Below D we need to simulate on both remaining lineages.
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with the biggest contribution to the likelihood and
rH 5

Prob(Go|Gn)
Prob(Gn|Go)

. (11) therefore approximate the maximum-likelihood esti-
mate of our parameters P. The main problem with

This acceptance probability r is based on the work of importance sampling schemes is that little is known
Hastings (1970). In our specific implementation it can about how we can be sure that we have sampled enough
be simplified. The scheme for changing the genealogy genealogies from the region that contributes most to
creates a new genealogy from an old one by first ran- our likelihood function. It is common practice in our
domly removing a branch with all its possible migration group to run 10 “short” chains and then 2 “long” chains.
events, which creates a partial genealogy Gp. The proba- Using random values for the first parameter set, we have
bility of a particular change is only governed by the found that for a given data set the results converge to
number of coalescent nodes in the genealogy, and this a value that is not dependent on these initial parameter
number is constant so that the probabilities Prob(Gp|Gn) values when the total numbers of sampled genealogies
and Prob(Gp|Go) are equal. For a specific triplet of origi- exceed 30,000 genealogies (data not shown). These are
nal, partial, and new genealogies Go, Gp, and Gn 10 short chains with 1000 genealogies and 2 long chains

with 10,000 genealogies sampled. It seems to be suffi-Prob(Gn|Go) 5 Prob(Gp|Go) Prob(Gn|Gp) (12)
cient to deliver acceptable estimates for simulated data

holds. The resimulation process (7)–(8) is driven only and averages of those, although we would recommend
by the parameters P and so Prob(G|Gp) is proportional choosing a better start parameter than a random guess
to Prob(G|P) so that and running the program at least twice as long. The

number of genealogies needed for an accurate estimate
rH 5

Prob(Gp|Gn) Prob(Go|Gp)
Prob(Gp|Go) Prob(Gn|Gp)

is certainly dependent on many factors, such as starting
parameters, first genealogy, number of sampled individ-

5
Prob(Go|P)
Prob(Gn|P)

. (13)
TABLE 1

This results in cancellation of the Prob(G|P) terms Simulation of 100 single-locus datasets with 25 sampled
individuals for each population and 500 or 1000 bp,in r, so that we have

respectively, for different known parameter combinations

r 5 min11,
Prob(D|Gn)
Prob(D|Go)

2 . (14)
Truth Means SD

Q g Q g Q g NIf the genealogy is accepted, it is the starting point
for a new cycle; otherwise the previous one continues 500 bp
to be used. After having sampled a large number of 0.001 0.1 0.0011 0.86 0.0001 0.42 100
genealogies we estimate the parameters by maximizing 1.0 0.0010 2.91 0.0001 0.72 100
(6). In theory a single long Markov chain would be 10.0 0.0013 15.84 0.0002 2.99 81
enough to find the genealogies that contribute most to 0.01 0.1 0.0099 0.19 0.0011 0.03 100
the likelihood, but if we start from a very bad P0 we can 1.0 0.0104 1.30 0.0011 0.18 100
need an excessively long time to find this region. If the 10.0 0.0131 14.61 0.0016 2.10 100
likelihood of a new genealogy is only slightly better

0.1 0.1 0.0976 0.17 0.0101 0.03 100than that of the old one, the search is moving nearly 1.0 0.1008 0.92 0.0105 0.12 100
randomly and can spend a long time in regions that do 10.0 0.1067 8.06 0.0113 0.93 100
not contribute much to the final likelihood. The sam-

1000 bppler will move more quickly if the likelihood surface is
0.001 0.1 0.0008 0.29 0.0001 0.12 100steep. If we start with bad parameters there is some 1.0 0.0010 2.98 0.0001 0.78 100

chance that the likelihood surface is locally very flat. To 10.0 0.0017 21.41 0.0004 4.88 92
overcome this, we restart a new Markov chain with the

0.01 0.1 0.0102 0.13 0.0011 0.02 100improved P and the last genealogy of the most recent
1.0 0.0103 1.03 0.0011 0.13 100chain. Our implementation uses a number of short 10.0 0.0112 10.40 0.0012 1.32 100

chains in which the parameter estimates are based only
0.1 0.1 0.0985 0.18 0.0102 0.03 100on a few genealogies to find regions with good param-

1.0 0.1013 0.94 0.0106 0.12 100eter values. It then uses an arbitrary number of long
10.0 0.1042 7.83 0.0108 0.87 100chains to get good estimates of the parameters. All but

SD, standard deviation. Q 5 4Nem, where Ne is the effectivethe last chain are discarded and not used for the final
population size and m is the mutation rate. g 5 4Nem, whereresult. Kuhner et al. (1998) have not found a decrease in
m is the migration rate. In two cases the numbers of replicatesperformance compared to the scheme of taking several
N are 81 and 92, respectively, instead of 100: the program

chains into account for the final result. If we run this failed to find the maximum of the likelihood surface and these
genealogy sampling process long enough and with cases were excluded. The values shown are for population 1;

those for population 2 are similar.enough chains, the sampler will find its way to the region
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TABLE 2

Influence of number of sites and number of loci on parameter estimates

Loci

1 2 5 10
[100] [50] [20] [10]

bp Q g Q g Q g Q g

Means
500 0.0102 1.13 0.0088 1.06 0.0097 0.99 0.0108 0.97

1,000 0.0098 1.05 0.0104 1.10 0.0104 1.16 0.0100 0.77
2,000 0.0107 0.99 0.0098 1.02 0.0104 1.00 0.0100 0.83
5,000 0.0103 0.96 0.0103 0.90 0.0104 0.87 0.0107 0.89

10,000 0.0102 0.88 0.0103 0.89 0.0100 0.82 0.0109 0.83

Standard deviations
500 0.0011 0.17 0.013 0.19 0.0023 0.25 0.0036 0.34

1,000 0.0010 0.13 0.0015 0.20 0.0024 0.28 0.0034 0.26
2,000 0.0011 0.13 0.0014 0.18 0.0024 0.25 0.0034 0.29
5,000 0.0011 0.12 0.0015 0.15 0.0024 0.21 0.0036 0.31

10,000 0.0011 0.11 0.0015 0.14 0.0023 0.19 0.0037 0.29

A total of 25 individuals were sampled for each population. For each mean a total of 100 loci were examined.
The numbers of replicates are in brackets. The true values are Q 5 0.01 and g 5 1.0. The values shown are
for population 1; those for population 2 are similar.

uals, variability in the data set, and number of migration other due to migration or due to low variation caused by
events. a small Q. The simulated datasets with low Q sometimes

show by chance no variation at all in short sequences.
In these cases one would expect the estimate of Q to

SIMULATION RESULTS be 0.0 and the estimate of M to be indeterminate. The
likelihood surface for such data is very flat and some ofWe have simulated genealogies with known true pa-
the runs (Table 1) failed to find a maximum. Theserameters PT using a coalescent with migration and
cases were omitted from the tables. If the migrationevolved data according to our data models along the
parameter g is high, it is consistently underestimatedbranches starting from the root of the genealogy (Hud-
with high Q. This is caused by our allowing only a lim-son 1983). The data that resulted at the tips were used
ited number of migration events per genealogy in theas the input data for our method. The mutation rate
Markov chain Monte Carlo runs, which were 1000was held constant for all simulations except one, in
migration events per genealogy, so that solutions withwhich we used a gamma-distributed mutation rate with
higher numbers of migration events were not proposed.shape parameter a 5 1.0. For all other simulations we
Our method delivers similar estimates for Q and similarused 10 short chains sampling 1000 genealogies, keep-
or better estimates for g than an FST -based estimatoring 100 of these genealogies for the parameter estima-
(Table 3).tion and 3 long chains sampling 10,000 genealogies,

The number of cases in which the FST -based estimatorusing 1000 of them. The last chain delivered the parame-
(Table 3) is usable is often dramatically lower than thatters shown in the tables, and all other chains were dis-
with the ML estimator (Table 1; see also appendix).carded.
For example, with QT 5 0.001 and gT 5 10 the FST -basedFor the comparison with an FST -based estimator (see
estimator could be used in only 45 out of 100 runs. Thisappendix) we used a symmetrical parameter setup for
behavior seems not to improve with longer sequences.the simulations, Q1 5 Q2 and g1 5 g2. However, the
Increasing the number of sites and the number of lociparameters that were estimated were not constrained
helps to reduce the variance of the ML estimates (Tableto be symmetric.
2 and Figure 4). Estimates of g from datasets with veryOur simulations generally recover the true QT very
long sequences are biased and are smaller than gT. Thiswell (Table 1). With 1000 bp the means are better than
is the result of low acceptance rates during a run, whenwith 500 bp. The means for g are not close to the true
the starting genealogy is so well defined by the data thatgT. With low QT values g is grossly overestimated. The
in our simulation runs the chains were too short andupward bias in g is huge with 500-bp data and shrinks
too few different migration scenarios were tried. Thewhen longer sequences are used (Tables 1 and 2).

Sequences in two populations can be similar to each estimation of nonsymmetrical true parameters works
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TABLE 3 as with the discrete gamma approximation, slightly in-
creasing.FST -based estimator with three parameters (Q ;

Q1 ; Q2, M1, M2, see also appendix)

DISCUSSION
Truth Means SD

The estimation of the migration parameter g seems
Q g Q g Q g N to be rather imprecise, and this is true for both migrate

500 bp and FST (e.g., Tables 1 and 3). The standard deviations
0.001 0.1 0.0009 0.70 0.0002 0.32 68 for g are large for single-locus estimates. More sites per

1.0 0.0011 7.39 0.0002 4.60 63 locus give better estimates but the improvement of the
10.0 0.0011 19.45 0.0002 10.04 45 variance is small, and given the obstacles of sequencing

0.01 0.1 0.0087 129.40 0.0012 130.10 80 long stretches of DNA for several individuals one might
1.0 0.0091 4.11 0.0012 1.04 77 better invest in the investigation of an additional un-

10.0 0.0118 14.40 0.0018 4.73 53 linked locus. Each new locus has its own genealogy that
is not correlated with that of the other loci and so0.1 0.1 0.0720 0.70 0.0090 0.39 75

1.0 0.0901 3.34 0.0107 0.63 84 increases the power of estimating parameters more, as
10.0 0.0868 15.96 0.0122 4.43 59 we can see in Table 2.

There is considerable bias in the estimates of g when1000 bp
datasets either have no or little genetic variation or have0.001 0.1 0.0008 0.63 0.0001 0.23 74

1.0 0.0012 8.07 0.0002 3.83 70 very high variation. Datasets with almost no variation
10.0 0.0012 7.94 0.0002 2.26 55 inflate M and produce an upward bias. The likelihood

surfaces become very flat because of the lack of varia-0.01 0.1 0.0101 0.69 0.0018 0.25 76
tion, and almost any migration parameter value is possi-1.0 0.0094 2.51 0.0012 0.58 78

10.0 0.0091 602.17 0.0014 588.26 59 ble. These problems can be overcome by adding more
variation, which for low true population size QT means0.1 0.1 0.0726 0.71 0.0900 0.28 77
either adding more base pairs or adding more individu-1.0 0.0869 13.38 0.0102 6.65 85
als. With high QT and high true migration parameter10.0 0.0940 43.11 0.0140 25.07 54
gT, the estimates are biased downward because of our

Means and standard deviations of 100 single-locus datasets need to truncate the number of migration events inwith 25 individuals were sampled for each population and
the reconstructed genealogies at some high arbitrary500 bp or 1000 bp, respectively. In all cases in which the
number. If we did not bias against high numbers ofhomozygosity within a population is not less than the homozy-

gosity between populations, the FST estimator fails. Those repli- migration events, the program could add more and
cates have been discarded. N shows the number of replicates more migration events and would eventually crash the
remaining. The values shown are for population 1; those for computer by running out of memory or would run toopopulation 2 are similar.

long.
In single runs we can also see a “fatal attraction” to

0.0 if the true parameters are very close to 0.0. The
quite well (Table 4). We encounter similar biases as genealogy sampler is using the current parameter values
with symmetrical parameters: with low Q the g estimates to propose coalescences and migration events. If one
are biased upward and with high Q they are biased or more of these parameters are very close to 0.0, then
downward. it can be seen by inspecting (2) that as a result our

The assumption that mutation rate varies according procedure will either most often propose an immediate
to a gamma distribution adds more noise to the estima- coalescent event if one of the Q is close to 0.0 or rarely
tion. All biases are similar to the ones shown in the propose an immigration event with very low g. If a chain
tables. The estimation of the shape parameter 1/a is never proposes any instances of an event, its rate of
certainly not very precise with only a few loci (Figure occurrence will be estimated to 0.0, and this situation
5). One of the runs shown in Figure 5 obviously contains may persist indefinitely, a fatal attraction. Even if the
almost no information about 1/a and its log-likelihood parameters are prevented from becoming exactly zero
curve is nearly flat, so that almost any value of 1/a can this means that it may take large amounts of simulation
be accepted for this dataset. The increase of the log- to escape these values.
likelihood values with very small 1/a and far from the Because long sequences define the genealogy very
maximum is due to imprecisions in the calculation using well, our Markov chain Monte Carlo sampler will often
the discrete gamma approximation. In evaluations us- reject newly proposed genealogies and only a few differ-
ing a more exact but much slower quadrature scheme ent genealogies are sampled for the parameter estima-
(Sikorski et al. 1984) the peaks of the log-likelihood tion. Therefore, the program does not readily explore
curves are at similar values, but log-likelihood for very the whole migration-genealogy space and tends to stick

to the good starting genealogy. This generates a bias inlow 1/a values are monotonically decreasing and not,
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Figure 4.—Example of esti-
mation of population parame-
ters for two populations with 1,
3, and 10 loci. The graphs are
cross-sections through the pa-
rameter space passing through
the peak of the likelihood sur-
face. The axes are on a loga-
rithmic scale. The dashed lines
give the true values of the
parameter values: Q1 5 0.05,
Q2 5 0.005, g1 5 10.0, g2 5 1.0.
The gray area is an approxi-
mate 95% confidence set based
on a likelihood-ratio test cri-
terion defined as the range
of parameter values with log-
likelihood values equal to or
higher than the maximum
20.5 3 9.4877 (x2

d.f. 5 4; a 5 0.05).

M because we have started with a genealogy that has a parameters but allows more realistic estimation of the
parameters with several loci.minimal number of migration events on it (Table 2).

We may be able to overcome this mixing problem by Conclusion: Our method based on coalescents with
migration delivers similar or better estimates than theadding a “heating” scheme to our importance sampling.

Currently the only way to overcome this is to run the FST method based on the expectations derived by May-
nard Smith (1970), which for certain data also pro-chains much longer than the defaults (for practical guid-

ance see Beerli 1997). duces fine results. Qualitative comparison with other
methods than the FST measure, for example RannalaSumming over loci assuming that the mutation rate

is constant between loci delivers much better estimates and Hartigan (1996), or the cladistic approach of
Slatkin and Maddison (1989; see also Hudson et al.of the parameters than single-locus estimation. This

model is rather unnatural for real data, especially micro- 1992, their Table 1) shows that all these methods have
a tendency to overestimate g when Q is not very high andsatellite data or electrophoretic data. Summing over loci

using a gamma-distributed mutation rate and estimating all methods have quite large variances. The maximum-
likelihood estimators have smaller variances than thethe shape parameter 1/a increases the variation of the
other approaches. But the biggest drawback of the FST

methods compared to ML methods seems to be their
TABLE 4 inability to estimate population size and migration rate

for data where the homozygosity between populationsSimulation with unequal known parameters of 100
two-locus datasets with 25 sampled individuals for happens to be equal to or less than the homozygosity

each population and 500 bp per locus within a population (see also Hudson et al. 1992).
Direct comparison of the different methods is cur-

Population 1 Population 2 rently difficult because each one estimates a different
number of parameters or uses a different migrationQ g Q g
model. We expand our model to accept more popula-

Truth 0.0500 10.00 0.0050 1.00 tions and different migration schemes. This should then
Means 0.0476 8.35 0.0048 1.21 facilitate direct comparison. We believe that taking the
SD 0.0052 1.09 0.0005 0.15 history of mutation into account and summing over all

SD, standard deviation. possible genealogies gains the most information from



771Estimation of Population Parameters

Figure 5.—Log-likelihood curves of
shape parameter 1/a. The true 1/a is
1.0. The curves were evaluated with Q
and g parameters from the maximum-
likelihood estimate. Left, 10 runs with
10 loci each. Right, sum of the log-likeli-
hood curves over 10 runs with 10 loci
each.
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L(P0)
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m
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Prob(Gi|P)
Prob(Gi|P0)
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APPENDIX
In Markov chain Monte Carlo approaches, the goal is

Derivation of the importance sampling function: We to sample from the posterior and concentrate the sam-
want to calculate Equation 1 but would need to sum pling on regions with higher probabilities (Ham-
over all possible genealogies. This function can be trans- mersley and Handscomb 1964; Chib and Greenberg
formed into an importance sampling function by assum- 1995; Kass et al. 1998). In our scheme we are approxi-
ing that L(P) is an expectation and we sample from a mating the target function Prob(G|P) Prob(D|G) with
distribution whose density is g instead of the correct Prob (G|P0) Prob(D|G); this may be a rather crude ap-
density, f, proximation when P0 is very different from P, but after

several updating chains the target and sampling distri-L(P) 5 Prob(D|P) 5 o
G

Prob(G|P) Prob(D|G) (A1)
bution are very similar. When Q and Q0 are very similar,
our approach is nearly optimal if it is run long enough5 Ef (h) 5 o

G
hf (A2)

to avoid problems of autocorrelation. Sampling from
the prior alone, Prob(G|P) for example, is very ineffi-

5 o
G

h
f
g

g 5 Eg(h
f
g
). (A3) cient as was shown by J.F. in 1988 (J. Felsenstein, un-

published data).
Suppose that Data models: Our migration estimation divides natu-

rally into two parts: calculation of Prob(G|P) and
g 5

Prob(G|P0) Prob(D|G)
RG Prob(G|P0) Prob(D|G)

, (A4) Prob(D|G). This makes it easy to implement models for
different kinds of data: any data model influences only
the latter calculation, which is the genealogy likelihoodh 5 Prob(D|G), (A5)
calculation.

and For sequences we are using the model of change
originated by one of us (J.F.) as implemented in PHYLIP

f 5
Prob(G|P)

RG Prob(G|P)
5 Prob(G|P), (A6) 3.2 in 1984, described in Kishino and Hasegawa

(1989) and described as F84 by Swofford et al. (1996).
It is a variant of the Kimura two-parameter model, whichbecause
allows for different transition and transversion ratios

o
G

Prob(G|P) 5 1; (A7) and variable base frequencies. In migrate the model
is the same as in PHYLIP 3.5 and includes also rate

then we have variation among sites (Felsenstein and Churchill
1996), but the inclusion of rate variation between sites

Ef(h) 5 o
G

Prob(G|P)
RG Prob(G|P)

Prob(D|G) was not tested.
For microsatellite data, we have implemented a one-

step mutation model in which the probability of making5 o
G

Prob(G|P) Prob(D|G) (A8)
a net change of i steps in time interval u is

5 Eg 1fgh2 Prob(i|u) 5 o
∞

k50

e2u(u/2)i12k

(i 1 k)!k!
. (A12)

5 Eg3(Prob(G|P)
In addition to the stepwise mutation model a Brownian
motion approximation is available; this fast approxima-

3 Prob(D|G)/1 Prob(G|P0) Prob(D|G)
RG Prob(G|P0) Prob(D|G)24, tion to the exact model is described elsewhere.

Our “infinite” allele model is approximated with a(A9)
(k 1 1)-allele model. The observed alleles are A 5 (a1,
a2, . . . , ak). All unobserved alleles are pooled into ak11.so that



773Estimation of Population Parameters

TABLE 5Prob(ai|ai,u) 5 e2ufai,

FST -based parameter estimationProb(ai|aj,u) 5 (1 2 e2u)faj,

Population 1 Population 2

Q g Q g Nfaz 5 5
1

k11
if az P A ,

1 2
k

k11
if az Ó A . Means

Truth 0.0500 10.00 0.0050 1.00 —
(A13)

SD 0.0138 13.80 0.0138 2.08 25 d

0.0116 3.56 0.0116 0.93 100 s

FST calculations: We use a calculation based on F(i)
W , the SM 0.1824 72.04 0.0057 1.25 64 d

homozygosity within the population i and FB, the homo- 0.1167 46.10 0.0048 1.39 100 s

zygosity between populations. For sequences, FW and FB Standard deviationscan be calculated using the heterozygosity calculations SN 0.0029 6.11 0.0029 0.55 25 d
described in Slatkin and Hudson (1991). The original 0.0012 1.49 0.0012 0.16 100 s

recurrence equations FW and FB were developed by May- SM 0.1219 59.01 0.0009 0.21 64 d

nard Smith (1970) and Maruyama (1970). We use an 0.0776 37.55 0.0006 0.19 100 s

equation based on Nei and Feldman (1972). The exact
Simulation with unequal known parameters of 100 two-locusequations are simplified by removing quadratic terms datasets with 25 sampled individuals in each population and

like m2, m2, and mm and divisions by number of individu- 500 bp per locus. SN, the population sizes are the same in
als in a population (e.g., m/N). For two populations in both subpopulations and migration rates are variable; SM, the

migration rates are symmetrical and the population sizes areequilibrium we get the equation system
variable. Simulation runs with negative migration rates were
discarded from the analysis in lines with d signs; in lines withF (1)

W 5
1

2N1

1 11 2 2m 2 2m1 2
1

2N1
2 F (1)

W 1 2m1FB
s, negative values were replaced by 0.0.

F (2)
W 5

1
2N2

1 11 2 2m 2 2m2 2
1

2N2
2 F (2)

W 1 2m2FB
The SM approach with Q1, Q2, and M ; M1 ; M2

results inFB 5 FB(1 2 2m 2 m1 2 m2) 1 m1 F (1)
W 1 2m2F (2)

W ,
(A14)

Q1 5
(1 2 F (1)

W )(F (1)
W 1 F (2)

W 2 2FB

(F (1)
W )2 1 F (1)

W F (2)
W 2 2F 2

Bwhere m is the mutation rate, mi is the immigration rate
into population i, and Ni is the subpopulation size. To

Q2 5
(1 2 F (2)

W )(F (1)
W 1 F (2)

W 2 2FB)
(F (2)

W )2 1 F (1)
W F (2)

W 2 2F 2
B

fit these calculations into our framework we replace
4Nm with Q and m/m with M. We cannot solve for
the four parameters we would need for an accurate M 5

2FB

F (1)
W 1 F (2)

W 2 2FB

. (A16)comparison with our likelihood method. We can solve
the equation system (A14) by assuming either that the

Comparing (A15) and (A16) one can recognize thatpopulation sizes are the same in both subpopulations
the estimation of Mi in (A15) breaks down when FB $(SN) or that the migration rates are symmetric (SM).
F (i)

W . In (A16) the M can be reasonably estimated onlyWith the SN approach solving for Q ; Q1 ; Q2, M1,
if 2FB # F (1)

W 1 F (2)
W . For the comparison with our maxi-and M2 we get

mum-likelihood estimator (Table 3) we used SN be-
cause of our emphasis on estimation of migration rates.Q 5

2 2 F (1)
W 2 F (2)

W

2FB 1 F (1)
W 1 F (2)

W

,
There are differences between the two FST methods even
when the true parameters are symmetrical (data not

M1 5
2FBF (1)

W 1 F (1)
W 2 F (2)

W 2 2FB

(F (1)
W 2 FB)(F (1)

W 1 F (2)
W 2 2)

, shown), but we do not have the impression that one FST

method works better than the other over the range we
are using for the comparison with our migratemethodM2 5

2FBF (2)
W 1 F (2)

W 2 F (1)
W 2 2FB

(F (2)
W 2 FB)(F (1)

W 1 F (2)
W 2 2)

. (A15)
(Table 5).




