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A maximum likelihood estimator based on the coalescent for unequal
migration rates and different subpopulation sizes is developed. The
method uses a Markov chain Monte Carlo approach to investigate
possible genealogies with branch lengths and with migration events.
Properties of the new method are shown by using simulated data
from a four-population n-island model and a source–sink population
model. Our estimation method as coded in MIGRATE is tested against
GENETREE; both programs deliver a very similar likelihood surface. The
algorithm converges to the estimates fairly quickly, even when the
Markov chain is started from unfavorable parameters. The method
was used to estimate gene flow in the Nile valley by using mtDNA
data from three human populations.

coalescence theory u population genetics

Estimation of migration rates from genetic data has a long
history. As soon as the first analyses of population samples

by using enzyme electrophoresis were available, migration rates
estimated from Wright’s FST (1) were used to infer patterns of
gene flow. With the advent of other types of genetic data, such
as restriction fragment length polymorphism data, DNA se-
quences, and microsatellite loci, migration rates have been
routinely estimated by using modified versions of FST (2–6).
Translation of these FST equivalents into migration rate esti-
mates most often assumes that all subpopulations have the same
size, or that there are infinitely many subpopulations, and that
the migration rates are all symmetric. If the true migration
pattern has been asymmetric, or the subpopulation sizes are
unequal, FST-based methods will deliver wrong estimates (7).

Recently, it became possible to estimate migration rates and
population sizes without the assumption that subpopulation sizes
are all equal (8) or that the migration rates between the
subpopulations are symmetric (9–12).

We describe here an extension of our two-population method
(10) that calculates maximum likelihood estimates of migration
rates and subpopulation sizes by using coalescence theory (13, 14).
Our method allows us to analyze more than two subpopulations, to
specify arbitrary migration scenarios, and to test a hierarchy of
different migration scenarios. Success of estimating migration
pattern is assessed with simulated sequence data in an n-island
population model and a source–sink population scenario. Conver-
gence to the correct result is investigated through simulation. The
performance of our method, implemented in the program MI-
GRATE, is compared with that of GENETREE (11). Finally, we analyze
a human mtDNA hypervariable region I data set from three
populations in the Nile valley, a total of 225 individuals.

Materials and Methods
Model. We infer the population parameters by using a maximum
likelihood approach based on coalescence theory (13, 14). This
likelihood is the probability of the data given the parameters P
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where Prob(GuP) is the probability of a genealogy G given the
population parameters P, such as population size (15), expo-
nential population growth rate (16), migration rates (10), and
recombination rate (17, 18).

Prob(DuG) is the likelihood of the data given the genealogy; this
quantity is widely used in phylogenetic inference (19, 20). In this
paper, we focus on estimation of migration rates and population
sizes while assuming a molecular clock at each locus. For a system
with n populations, we use the following set of parameters:
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where Mji is mjiym, where mji is the immigration rate from
population j into i, and m is the mutation rate per generation. For
sequence data, m is the mutation rate per site and for allelic data,
such as allozyme or microsatellite markers, and m is the mutation
rate per locus. Qi is 4Ne

(i)m, where Ne
(i) is the effective population

size of population i in a Wright–Fisher population model.
Sometimes we use gji, which is QiMji 5 4Ne

(i)mji.
Kingman’s coalescent can be extended to include migration

(21). Instead of just one type of event, the coalescence of
lineages, we need to record n2 different events: coalescences in
different subpopulations and migration events that switch lin-
eages from one population to another. This migration–
coalescence prior is a product over all time intervals T on the
genealogy (21). Going backwards in time and using a time scale
in which the units of time is the ratio of the generation time and
the expectation of the mutation rate, we have
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The exponential term is the probability that in the jth time interval
with length uj neither a migration nor a coalescent event happens;
uj is scaled by generations and mutation rate. The remaining term
is the point probability density of the actual event that happens. The
events in genealogy G are either migrations from subpopulation wj
to vj or coalescences in subpopulation vj. The indicator variable dj
is 1 when the event at the bottom of interval j is a migration event
and is 0 otherwise, and kji is the number of lineages in subpopulation

Abbreviation: MH, Metropolis–Hastings Markov chain Monte Carlo approach.
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i during time interval j. No modification of the genealogy likelihood
Prob(DuG) is necessary to accommodate migration events, as they
occur independently of mutation. The modified coalescent proba-
bility (3) and the genealogy likelihood are rather easy to calculate.

Unfortunately, the sum of the probabilities of all possible
genealogies with different topologies and branch lengths cannot
be calculated because there are infinitely many of them and no
analytical solution for the integral over branch lengths or
topologies is available. But it can be approximated by using the
Metropolis–Hastings Markov chain Monte Carlo approach (22,
23). This approach (which we denote MH) concentrates the
sampling of genealogies G in those regions of the genealogy
space that contribute most to the final likelihood. With MH
importance sampling, we compute instead of the likelihood L(P)
the ratio L(P)yL(P0), where P0 are the parameters that were
used to sample the genealogies. This is
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where g is the number of sampled genealogies. Our derivation of
formula 4 from formula 1 was described earlier (10) and is
essentially a standard MH scheme (24). The denominator L(P0)
is unknown, so that we cannot estimate the absolute likelihood,
but this likelihood ratio is proportional to the absolute likelihood
function. The parameter estimates obtained by maximizing this
approximate likelihood ratio will approach the maximum like-
lihood estimates as the number of sampled genealogies g be-
comes infinite (22, 23). We find that very good estimates are
achieved with a moderate number of genealogies (10, 15–17).

Our MH approach needs a set of starting parameters P0 and an
initial genealogy. These starting parameters can often be found by
using a simpler method, such as methods based on FST (25). The
first genealogy is created by using a UPGMA (Unweighted Pair
Group Method using arithmetic averages) method (see ref. 19) to
construct the topology, and by using Sankoff’s parsimony method

(26) to reconstruct the minimal number of migrations on that
topology. The branch lengths of this initial genealogy are drawn
randomly from a coalescent density for that topology given P0. Our
MH method (10) moves through genealogy space by making small
rearrangements of branches of the current genealogy. A new
genealogy is accepted with probability equal to the ratio of the
likelihood of the old genealogy and the likelihood of the new [(for
details, see ref. 10) r 5 min(1, Prob(DuGnew)yProb(DuGold)].

With a random or otherwise inappropriate starting genealogy
and an inappropriate P0, the program can spend much time in
regions with highly improbable genealogies. To overcome these
starting conditions, we use an adaptive scheme that samples 10
short chains, in each of which several thousand genealogies are
sampled, followed by two or three long chains, each of which
samples many tens or hundreds of thousands of genealogies.
After each chain, we reestimate the parameters P by maximizing
the likelihood ratio (4). These P are taken as the P0 of the next
chain. The last long chain is used for the final estimates of P; the
earlier chains are used only to obtain good starting parameters.

One would like to know not only the maximum likelihood values
of the population parameters, but also confidence intervals for
these parameters. Approximate confidence intervals can be gen-
erated in a maximum likelihood framework by using either the
curvature of the likelihood at its maximum or profile likelihoods
(27). The latter are more appropriate for our purposes, as curva-
ture-based estimates can be unreliable with many parameters unless
there are many loci. For an approximative confidence interval for
a single parameter, we compare twice the logarithm of the ratio of
its profile likelihoods to the quantiles of the x2-distribution with one
degree of freedom (27) for the desired level of confidence. If a
researcher needs multiparameter confidence intervals, she would
need to use a Bonferroni correction or a likelihood ratio test with
the correct number of degrees of freedom. The latter method is
implemented in MIGRATE. This likelihood-ratio-based approach
may be inappropriate for data that in theory cannot be extended,
such as mtDNA, because the x2 approximation becomes exact only
as we add a large number of loci.

Results
Simulation Study. Data sets were created by using an approach first
described by Hudson (28). For some given set of true parameters
Qi and 4N(i)mji, a coalescent genealogy is created. This genealogy
is then used to evolve sites according to the Kimura two-parameter
substitution model (29), starting at the root of that genealogy. The
sites resulting at the tips are taken as the data. We used 500 sites

Fig. 1. n-island model with four populations of equal size, exchanging
migrants with equal rates.

Table 1. Averages of population parameters of a n-island population (see Fig. 1) based on 100
simulated data sets, each with 10 unlinked loci

Population i Q

4Nm

13 i 23 i 33 i 43 i

1 2.5% 0.0085 — 0.7394 0.6716 0.6586
ML 0.0104 — 1.0043 0.9280 0.9136

97.5% 0.0121 — 1.4329 1.3361 1.3161
2 2.5% 0.0083 0.6688 — 0.6745 0.6316

ML 0.0102 0.9236 — 0.9201 0.8752
97.5% 0.0118 1.3254 — 1.3197 1.2626

3 2.5% 0.0083 0.6882 0.6311 — 0.5933
ML 0.0101 0.9471 0.8840 — 0.8343

97.5% 0.0117 1.3605 1.2782 — 1.2155
4 2.5% 0.0084 0.6616 0.6740 0.6255 —

ML 0.0103 0.9149 0.9354 0.8757 —
97.5% 0.0119 1.3219 1.3536 1.2711 —

All sequences were 500 bp long. The values shown are the 2.5% percentile, the maximum likelihood estimates,
and the 97.5% percentile of the population sizes Q and 4Nm, where m are the immigration rates. The true Q was
0.01 and the true 4Nm was 1.0. The populations in the rows receive immigrants from those in the columns. ML,
maximum likelihood.
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for each locus in all simulations, except for the comparison of our
own results with those from GENETREE (11).

n-island model. We simulated a 4-island model and were
generating 100 10-locus data sets with 25 individuals sampled
from each of 4 subpopulations (Fig. 1).

The values for the Qi were taken to be equal and set to 0.01,
a value that is moderately close to the estimate of Q 5 0.039 from
mtDNA control region domain I sequences from the Nuu-Chah-
Nulth people (15). The migration parameters 4Nm were all set
to 1.0. Data sets were analyzed twice, once under the assumption
that this is a symmetric n-island model with two parameters Q
and 4Nm, which are the same in all populations, and once under
the assumption that we have n2 parameters, n different Qi and
n(n 2 1) different 4Nimji.

The averages for the two parameters of the n-island model
were Q# 5 0.00999 with an SE of 0.00007 and 4Nm 5 0.96327 with
an SE of 0.01351. Averages of the limits of the one-parameter
95% profile confidence intervals were (0.00888, 0.01089) and
(0.86656, 1.12981), respectively. The estimates for the full mi-
gration matrix model with all 16 parameters is shown in Table 1.
The estimates for the Qi are surprisingly precise given the
parameter-rich model, but most of the 4Nimji are lower than the
true value parameter, although the averages of the individual
95% profile confidence intervals include the true parameter
values.

Source–sink model. The full model with n population sizes and
n(n 2 1) migration rates is able to detect asymmetric gene flow and
differences in population sizes. But for some analyses, this freedom
is undesirable because the researcher already has some idea of the
pattern of gene flow or the population sizes and may want to fix

population sizes, force migration rates to be symmetric, use equal
migration rates, or set some migration rates to zero. This goal can
be achieved in MIGRATE by using a migration connection matrix
(http:yyevolution.genetics.washington.eduylamarcymigratedocy
migratedoc.html), such as the one shown in Fig. 2.

One hundred simulated 10-locus data sets from the popula-
tions shown in Fig. 2 were analyzed by using the full set of 16
parameters, and 50 data sets were analyzed by using only the 7
parameters implied by the migration-connection matrix.

Some of the simulations in Table 2 do not recover the true values
of the migration parameters very well: all parameters with true
parameter values of 0.0 are overestimated. Most disturbing are the
values for migrations from population 2 to 1, from 3 to 2, and from
4 to 1. But this fact is not surprising, as all parameters are bounded
by zero but have no upper limit. Our estimates must deliver a value
greater than zero, so that the result must be an upwards bias. In
addition, if we do not know the directionality of gene flow, finding
the same haplotype in two or more populations will force the
program to estimate at least a small migration rate in the wrong
direction. Only a few mutations will arise in the small population
and be visible in the sample, and only those unique mutations would
contribute to inferring that that gene flow from the small popula-
tion to the big population is very small. Thus, we would need many
loci to establish this directional pattern.

If we know the migration model and need to estimate only 7
instead of 16 parameters, the maximum likelihood estimates are
almost identical to those for the parameter-rich model shown in
Table 2, but the profile confidence intervals are slightly smaller:
the coefficients of variation (CV) of the parameters are about
25% smaller than with the full model. For example, with 7
parameters, the CV for g12 is 0.299, whereas for the full model,
the CV for g12 is 0.392.

Convergence of Our Metropolis–Hastings Sampling Method. Our
Metropolis–Hastings Markov chain algorithm is irreducible, as it
can reach any possible genealogy from any other. However, it
may take a very long time until the proper regions of the
parameter space are found, because the algorithm is sensitive to
the start parameters. This problem is specific not to our algo-
rithm but to any MH algorithms that draw correlated samples.
There is no simple criterion to judge when the program has
converged to the best possible answer. Several convergence
measures have been suggested, but there is no guarantee that
convergence occurs in a given run (30). We have used a simple
graphical method to explore convergence of the two-parameter

Fig. 2. A source–sink population complex. (A) Arrows mark directions of
migration, and disk sizes are proportional to population sizes. (B) The corre-
sponding population connection matrix used in MIGRATE. The matrix contains
specifications for Q on the diagonal and for the M off-diagonal. * indicates
this parameter is estimated without restriction, and 0 indicates it is held to 0
so there is no direct gene flow between these subpopulations.

Table 2. Averages of population parameters of a source-sink population (see Fig. 2)

Population i Q

4Nm

13 i 23 i 33 i 43 i

1 True 0.05 — 0.0 0.0 0.0
2.5% 0.0408 — 0.1655 0.0358 0.0338
ML 0.0465 — 0.2734 0.0892 0.0817

97.5% 0.0547 — 0.4465 0.1730 0.1623
2 True 0.05 1.0 — 0.0 0.0

2.5% 0.0411 0.6676 — 0.5783 0.0157
ML 0.0471 0.8917 — 0.7775 0.0533

97.5% 0.0560 1.3088 — 1.1648 0.1215
3 True 0.01 0.0 1.0 — 0.0

2.5% 0.0097 0.0425 0.5600 — 0.0030
ML 0.0113 0.0949 0.7238 — 0.0156

97.5% 0.0136 0.1807 1.0451 — 0.0403
4 True 0.01 0.1 0.0 0.0 —

2.5% 0.0086 0.0356 0.0076 0.0046 —
ML 0.0101 0.0699 0.0252 0.018 —

97.5% 0.0121 0.1309 0.0579 0.0441 —

Each of the 100 simulated data sets had 10 unlinked loci, each of which was 500 bp long. The values shown are
the true values, the 2.5% percentile, the maximum likelihood estimates, and the 97.5% percentile estimates of
Q and 4Nm. ML, maximum likelihood.
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model (Fig. 3). A single-locus data set of DNA sequences with
500 bp with 100 individuals sampled from a symmetric model
with 4 populations was generated with Q 5 0.01 and M 5 100.
We ran four cases each with starting parameters (Q0, M0) equal
to (0.0001, 2), (0.001, 200), (0.1, 200), and (0.1, 2) (see Fig. 3).
Each run had 10 short chains, each with a total of 20,000
genealogies, and 3 long chains each with a total of 110,000
genealogies. The first 10,000 genealogies in each chain were
discarded. At the end of each chain, the parameters were
estimated and recorded, and the next chain was then started with
these new parameters. These four cases were then compared
with a very long run (five times longer) that started from
estimates Q0 and M0, which were based on FST estimates.

The starting points P0 chosen for this convergence study are fairly
far from the true parameter values (see ref. 31), but the adaptive
improvement of the P0 moves gradually toward parameters of
highest likelihood for this data set, as can be seen in Fig. 3: in A, B,
D, and F, the trajectories are moving toward values close to the true
parameters, namely toward the maximum likelihood estimates for
this specific data set, Pdata. In Fig. 3C, the trajectory first moves
toward high M values (256.4, outside of the shown frame) while
staying at low Q (0.0066) and then returns toward Pdata.

Comparison with GENETREE. GENETREE (11) can use only sequence
data that evolve according to an infinitely-many-sites model. To
approximate this model, we simulated data according to the
Kimura two-parameter model, but when more than one mutation
occurred on the genealogy for a given site, we split the site into two
or more new sites, so that each of these new sites would have
mutated only once or not at all. We simulated sequence data for 100
loci with 500 bp each that evolved according to this infinite-sites

model with 2 populations with 2 sampled individuals each. The
subpopulations had the same size (Qi 5 0.002) and had a symmetric
migration model with rate 4Nm 5 0.1. This data set was analyzed
with GENETREE after removal of the invariant sites and also
analyzed with MIGRATE for the full set of sites. We chose to evaluate
a data set with few individuals and these parameters so that we can
compare the outcomes of both programs independent of their
ability to search the genealogy space. With GENETREE, we sampled
1,000 genealogies per locus and used the true parameters to run the
sampling process. Our true parameters defined the driving param-
eters for GENETREE to be u0 5 4, and 4Nm0 5 0.2. The u0 and 4Nm0
used in GENETREE are computed from the mutation rate per locus,
and N is the size of the whole population. MIGRATE was run at its
default values, except for the following settings: the starting P0 were
set to the true values, and the lengths of sampling were set to 10
short chains each of 400 genealogies, of which the first 100 were
discarded and then every third genealogy used for the parameter
estimation, and then two long chains with 1,600 genealogies each,
of which the first 100 were discarded and then every third one was
used for parameter estimation. This was a total of 7,200 genealogies
visited per locus.

With a large number of loci, one expects that the results should
converge to the values used to generate the data. With 100 loci
and only 4 sampled individuals, there is much uncertainty about
the parameters, but both programs include the true parameter
values in their 50% confidence regions (Fig. 4).

MIGRATE spent 45 min for the whole 100-locus data set on a
computer with a 166-MHz Pentium processor, running LINUX.
It was sampling '271 genealogies with 4 tips per second;
GENETREE spent roughly 350 min on the same computer, and it
evaluated about 5 genealogies per second. However, MIGRATE’s

Fig. 3. Convergence of parameter estimates in MIGRATE. Four runs by using different initial parameter settings in MIGRATE: (A) Q0 5 0.1 and M0 5 2, (B) 0.001
and 2, (C) 0.1 and 200, (D) 0.001 and 200. E shows run that was started with values from an FST-based method with Q0 5 0.0097 and M0 5 97. F compares the
average surface of A–D with E. In A–E, the line marks the trajectory of the parameter estimates over successive chains to the final estimate (black disk). Solid
contour lines depict approximate 50 and 95% likelihood-based confidence regions. Gray-scale contour areas are from dark to light, 50, 95, 99% confidence
regions of the average of A–D. The data set was generated by using Q 5 0.01 and M 5 100 (dashed lines).
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genealogies are autocorrelated, whereas GENETREE’s are inde-
pendently sampled.

Example Data Set. For a real-world example, we used aligned
mtDNA control region domain I sequences of populations from the
Nile valley, described by Krings et al. (32). The aligned sequences
were taken from the compilation of Handt et al. (33). We chose
the following three groups: Egypt (79 sequences), Nubia (69 se-
quences), and Sudan (79 sequences). These 225 sequences certainly
violate several of the assumptions MIGRATE is based on: the
‘‘populations’’ are assemblages of local populations, some or all of
the population sizes were not constant, and migration rates between
the populations were most likely not constant over time.

In our analysis, we ignored the existence of unsampled pop-
ulations but took into account that mutation rates of the mtDNA
control region Domain I data are heterogenous among sites by
using a Hidden Markov Model with F84 mutation model with 4
rates (0.025, 0.239, 0.787, 2.354) with equal probability (34). This
is an approximation to a Gamma distribution with a 5 0.3 (see
ref. 35). We used a transition–transversion ratio of 15 and the
empirical base frequencies (A: 0.3302, C: 0.3313, G: 0.1161, T:
0.2225). We analyzed the data by using starting Qi of 0.5 and Mji
of 5.0. Because of the size of the problem, we used a Metropolis-
coupled MH algorithm (36) with four independent chains that
accept at different rates. The chain that was used for the
estimates uses an unmodified acceptance ratio, whereas the
others accept more often. Switching between neighboring chains
followed the approach of Kuhner and Felsenstein (37).

The results of the analysis are shown in Table 3. The gene flow
among the populations seems to be moderate, except that there
is considerable gene flow from Egypt into Nubia and from Sudan
into Nubia.

Discussion
The present method allows us to analyze a wide range of different
population models. It allows us to estimate as many as n population
sizes Qi and n(n 2 1) immigration rates Mij or as few as two
parameters, a Q that is equal for all subpopulations and an M that
is the same between all pairs of subpopulation. With the migration
connection matrix, one can analyze arbitrary migration models
where some migration routes are not allowed. This versatility allows

us to consider biologically relevant migration scenarios and to put
some of the complication under the control of the user.

The MH technique for this method is identical to that
described in ref. 10. Our method wanders through the sample
space by proposing local changes on a genealogy and rejecting or
accepting such a changed genealogy according to their likeli-
hood. These changes in genealogy are reversible: we showed (10)
that this branch insertion and removal process allows us to
connect any two genealogies with a modest number of rear-
rangements, and that genealogies are sampled in proportion to
Prob(GuP0) Prob(GuD). This MH sampler will converge to the
correct answer when run for an infinitely long time, but of course
our hope is that convergence will be achieved much earlier. For
simple population scenarios, such as in our simulations of the
n-island model, we can get similar parameter estimates even
from bad starting parameters (Fig. 3). Our adaptive scheme
using many short chains and a few long chains helps move the
sampler into regions with genealogies that have high probabil-
ities. As a result, estimates are more accurate than if they came
from a single long chain run at an arbitrary P0. For practical
purposes, this self-targeting process for finding the appropriate
distribution is important, as it seems less desirable to rely on the
user to find good starting parameters or to ask the user to restart
the estimation process many times.

For large data sets, the researcher may need to run MIGRATE
several times with different chain lengths to see whether the length
and the number of the chains are influencing the result. Alternative
strategies are the use of Metropolis coupling (36) (e.g., our real-
world example) or summarizing over different chains (15, 38) or
even over different runs. These extensions will improve results but
will increase the time for analysis considerably. In GENETREE (11),
which is currently the only competing coalescent likelihood pro-
gram, no such adaptive scheme is used, and the researcher needs to
find appropriate starting parameters by doing the iterations by
hand. Our and Bahlo and Griffiths’ schemes will produce strange
estimates when the starting parameters are far from the truth (Fig.
3; ref. 31). Bayesian approaches, although they vary the parameters
of interest during the sampling process, will have similar problems
if they are based on MH: with increasing numbers of parameters,
the search space gets larger and much more sampling needs to be
done to produce a proper posterior distribution. So far, there is no
Bayesian method for analyzing migration models by using the
coalescent, except for the two-population method developed by
Nielsen and Slatkin (39).

The comparison with GENETREE shows that for the cases chosen,
both methods deliver similarly shaped likelihood surfaces, as they
should, because both are approximating the same likelihood crite-
rion (17). For this data set, GENETREE has slightly wider confidence
intervals in the Q direction than MIGRATE (Fig. 4). When using only

Fig. 4. Comparison between results from MIGRATE and GENETREE. The loga-
rithm likelihood contours inferred by MIGRATE are drawn with solid lines, and
those inferred by GENETREE with broken lines. Contour lines enclose approxi-
mate 50, 95, and 99% likelihood-based confidence regions. The dashed lines
mark the true parameter values used to generate the data set.

Table 3. Gene flow between three human populations (Egypt,
Nubia, Sudan) in the Nile valley (32)

Population i Q

2Nfm

Sudan3 i Nubia3 i Egypt3 i

Sudan 0.122 — 3.19 3.70
0.094–0.158 1.70–5.61 2.06–6.29

Nubia 0.107 37.50 — 28.41
0.072–0.162 27.04–54.97 19.11–43.16

Egypt 0.108 5.14 4.45 —
0.169–0.372 2.83–8.78 2.38–7.78

A total of 225 mtDNA control region Domain I sequences from the database
of (ref. 33) were analyzed. The maximum likelihood estimate and the 95%
profile confidence intervals of population sizes Q 5 2Nfm, where Nf is the
effective population size of females and m is the mutation rate per generation
and per site, and 2Nfm, the number of immigrant females per generation, are
shown. The receiving populations are in the rows.
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a single population, both programs deliver almost identical likeli-
hood curves and therefore confidence intervals (data not shown).
The small differences might be caused by the different assumptions
about the mutation model or by the different distributions from
which the programs sample their genealogies.

Advantages of MIGRATE over the current version of GENETREE
are that the researcher can take into account different mutation
models, such as the infinite allele model, a stepwise mutation
model for microsatellite data, and sequence evolution models
with rate heterogeneity among sites (34). All models can be
combined with a model of rate heterogeneity among loci (10).

In the simulations tests of an n-island migration model, the
averages of the two-parameter model are rather close to the
values used to generate the data sets but are most often slightly
smaller. This is in stark contrast to theoretical results showing
that expectations of parameters over all simulations do not exist
or at least are highly biased upwards (41). There exists a very
small but nonzero probability that the data are compatible with
a genealogy of infinite length. If such a data set is encountered
in a simulation study, the program will return very large param-
eter estimates. The distributions of the 100 10-locus estimates
from the simulation have heavy right tails (skewness S for Q is
0.063 and for 4Nm is 0.11). The skewness is more pronounced if
we look at the distribution of the 1,000 single locus estimates (SQ

5 0.195, S4Nm 5 0.896). In fact, there is an upwards bias that is
reflected in the skewness but not much in the averages because
in these 100 simulation runs, we have not yet encountered a very
high parameter value. On the other hand, there is a ‘‘fatal
attraction’’ to zero: once a parameter becomes very small, it is
unlikely that our adaptive MH procedure will succeed in reach-
ing higher parameter values, because the events that are under
the control of that parameter are not proposed and therefore
subsequent parameter estimates tend to stay small.

For some population structures, such as a hidden source–sink
scenario with large gene flow from a large population to a small
population, results are not very enlightening without additional
information about the migration structure. It remains to be
shown that other methods are superior for these kinds of data.
We expect that when we do not know the migration structure,
many loci and many individuals will be needed to detect the few
new mutations in the small sink population. Only then would we
be able to see whether any of these rare mutations migrate back
into the source population.

The difficulty of retrieving the true parameters increases with
the number of parameters. Estimates for two parameters show
smaller profile confidence intervals than the estimates with 16

parameters, but if the true population structure is complicated,
the two-parameter model also delivers much less information
than a more parameter-rich model.

Krings et al. (32) infer gene flow in the Nile valley by using
analyses of molecular variance (AMOVA) (40). Their findings
coincide with ours, in that Nubia seems to have received a
considerable number of genes from Egypt and Sudan. The
population sizes are most likely inflated, because we did not take
into account that the individual populations are substructured,
and because all populations exchange migrants with their other
neighbors, who contribute genetic variation which we do not
account for in our analysis.

The rather large range of possible values for the migration
parameters in the example of possible migration directions in the
Nile valley makes it evident that single locus data, even if it is highly
variable, does not help much in clarifying current discussions in
anthropology. Additional unlinked loci, each with its own coales-
cent history, can reduce this uncertainty greatly (10, 17).

Conclusion
We have presented three lines of evidence that our method
works even for rather complicated migration models: derivation
of the MH sampling strategy (10, 15, 16), simulation to test
convergence to true parameters, and simulations to assess biases
and to see whether the method achieves results that are repro-
ducible and can be found in a reasonable amount of time.

Maximum likelihood methods for the estimation of population
parameters, as implemented in MIGRATE or GENETREE, will
make the current FST-based estimators obsolete, because these
do not take into account the genealogical relationship of the
sample and the possibility of asymmetry in gene flow. However,
the practical use of these new programs is limited to few
subpopulations or few parameters because of current lack of
computation power. Incorporation of the machinery of MIGRATE
into a program that can handle additional forces such as re-
combination and population growth is under way in our lab-
oratory. The program MIGRATE is available at http:yyevolution.
genetics.washington.eduylamarc.html.
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